

SOMJIT ROY

📞 +1(979) 344-3408 🗺 3143 TAMU, 155 Ireland St, College Station, TX 77843, USA
✉️ sroy_123@tamu.edu 🗯 Google Scholar 🐣 Github 🎓 ORCID 🌐 LinkedIn 🏠 Homepage

RESEARCH INTERESTS AND SKILL SET

My research focuses on advancing next-generation statistical modeling frameworks that bridge data-driven learning with scientific reasoning. I develop novel methodologies to address complex, real-world problems spanning materials discovery, physics, geophysics, chemical informatics, bioinformatics, and gene expression modeling. Positioned at the intersection of Scientific Machine Learning and Bayesian Modeling & Computation, my skills include Scientifically Guided Probabilistic Inference, Physics-Informed Modeling, Variational Inference, Tree-based Models, and Bayesian Optimization; aiming to build interpretable, scalable, and scientifically grounded learning systems.

EDUCATION AND TRAINING

Texas A&M University , College Station, Texas, USA	2023 — present
Doctor of Philosophy (Ph.D.) in Statistics	GPA: 4.00/4.00
Advisors: Bani K. Mallick (TAMU Statistics) & Debdeep Pati (UW-Madison Statistics)	
Area of Study: Probabilistic Scientific Machine Learning and Computational Bayes	
University of Calcutta , Kolkata, West Bengal, India	2021 — 2023
Master of Science (MSc.) in Statistics (Ranked First Class First)	GPA: 8.15/10.00
St. Xavier's College , Kolkata, West Bengal, India	2018 — 2021
Bachelor of Science (BSc.) in Statistics (Hons.)	GPA: 8.63/10.00

EXPERIENCE

Los Alamos National Laboratory	May 2025 — Aug 2025
Graduate Summer Intern	Los Alamos, NM, USA
<ul style="list-style-type: none">SPINWAVE: Scalable Physics-Informed Neural Operator for Seismic WAVE Modeling.	
• Advised by Kai Gao & Ting Chen in Earth and Environmental Sciences (EES-16) division. Developed a scalable framework for seismic wave modeling using Physics-Informed Neural Operators (PINO), for solving the acoustic wave partial differential equation in complex, heterogeneous media.	
Tata Electronics Pvt. Ltd.	
Data Science Intern	May 2021 — Aug 2021
Bengaluru, KA, India	
<ul style="list-style-type: none">Statistical Analysis and Optimization of Sandblasting & Anodizing.	
• Supervised by Nagasubramanian Kothandaraman (Tata Electronics Pvt. Ltd.) & Subhamoy Maitra (ISI, Kolkata). Identified key factors influencing material surface properties (gloss and texture) and optimized process parameters using machine learning architectures, achieving a reduction of two man-days in production time.	↗

PAPERS AND MANUSCRIPTS

Convention: ★ → Scientific Machine Learning, ★ → Bayesian Modeling & Computation, ★ → Variational Inference, ★ → Bayesian Optimization, and ★ → Quantum Cryptography.

7. **Roy, S.**, Gao, K., & Chen, T. (2025+). SPINWAVE: Scalable Physics-Informed Neural Operator for Seismic WAVE Modeling. (*In preparation*). ★
6. **Roy, S.**, Dey, P., Mallick, B. K., Pati, D., & Arróyave, R. (2025+). Multi-Property Materials Discovery using Bayesian Symbolic Trees. (*In preparation*). ★ ★
5. **Roy, S.**, Jaiswal P., Bhattacharya, A., Pati, D., & Mallick, B. K. (2025+). On Frequentist Regret Analysis of Fractional Gaussian Process Thompson Sampling. (*Submitted*). ★ ★

4. Roy, S., Dey, P., Pati, D., & Mallick, B. K. (2025+). Hierarchical Bayesian Operator-induced Symbolic Regression Trees for Structural Learning of Scientific Expressions. (*Submitted*). arXiv:2509.19710 [SBSS Student Paper Award 2026, American Statistical Association; Selected for refereed oral presentation at ASA's SDSS 2026].
3. Roy, S., Dey, P., Pati, D., & Mallick, B. K. (2025+). A Generalized Tangent Approximation Based Variational Inference Framework for Strongly Super-Gaussian Likelihoods. (*Submitted*). arXiv:2504.05431
2. Kumar, A., Maitra, S., & Roy, S. (2024). Almost Perfect Mutually Unbiased Bases that are Sparse. *Journal of Statistical Theory and Practice* **18**, 61.
1. Chaudhury, S., Kumar, A., Maitra, S., Roy, S., & Sen Gupta, S. (2022). A Heuristic Framework to Search for Approximate Mutually Unbiased Bases. In *Cyber Security, Cryptology, and Machine Learning. (CSCML) 2022. Lecture Notes in Computer Science*, vol **13301**. Springer, Cham.

OPEN SOURCE SOFTWARE

On Github: **HierBOSSS** (Roy, S. & Dey, P., 2025), **TAVIE-SSG** (Roy, S. & Dey, P., 2025).

R Packages on CRAN: **bayesestdft** (Roy, S. & Lee, S. Y., 2025), **GoodFitSBM** (Ghosh, S., Roy, S., & Pati, D., 2024), **gamblers.ruin.gameplay** (Roy, S., 2022), **YatesAlgo.FactorialExp.SR** (Roy, S., 2021, [Selected for a talk in the **useR** regional conference in Basel, Switzerland, July 2023]).

TECHNICAL SKILLS

- **Programming Languages:** Python, R, JAVA, C, C++.
- **Statistical & Machine Learning Tools:** RStudio, RStan, RShiny, mcmc, coda, PyMC, PyTorch, PyTorch Lightning, TensorFlow, SciPy, scikit-learn.
- **High-Performance & Cluster Computing:** Linux/Unix environments, MPI/OpenMP parallelization, CUDA -GPU programming, PyTorch DDP.
- **Version Control & Documentation:** Git, Markdown, LATEX.

AWARDS AND FELLOWSHIPS

- **SBSS Student Paper Award 2026, American Statistical Association.**
- **NSF Travel Grant & TAMU Statistics Department Student Travel Award (for IISA 2024).**
- Awarded **Targeted Proposal Teams (TPT)** grant & scholarship by Texas A&M University.
- Selected to attend **CMS³-FAST Summer School (2024)** in Texas A&M University.
- Awarded the **R.C. Bose Memorial Book Prize (2022)** by Calcutta Statistical Association.
- Awarded the **IASc-INSA-NASI Science Academies Summer Research Fellowship (2022)**.
- Recipient of the **OPHI, University of Oxford - Summer School Grant (2022)**.
- Awarded the **IAOS 2022 Conference and Travel Grant (2022)** by the World Bank.

TALKS AND PRESENTATIONS

- **JSM 2026:** Invited Award Presentation for Section on Bayesian Statistical Science (SBSS) Student Paper Award. On *Hierarchical Bayesian Operator-induced Symbolic Regression Trees for Structural Learning of Scientific Expressions*. (Boston, MA, USA).
- **SDSS 2026:** Refereed Invited Talk on *Hierarchical Bayesian Operator-induced Symbolic Regression Trees for Structural Learning of Scientific Expressions*. (Milwaukee, WI, USA).

- **STAT CAFÉ 2025:** On *Bayesian Symbolic Trees for Structural Learning of Scientific Expressions*. (College Station, TX, USA).
- **SIAM 2025:** Invited Talk on *Physics-Informed Neural Operators for Seismic Wave Modeling*. (UT Austin, TX, USA).
- **LANL Student Symposium 2025:** Poster on *Physics-Informed Neural Operators for Seismic Wave Modeling*. (Los Alamos, NM, USA).
- **IISA 2024:** On *Tangent Approximation for Variational Inference in different Exponential Families*. (Kochi, KL, India).

LEADERSHIP AND PROFESSIONAL ACTIVITIES

- **Workflow Workshop Organizer (2024—2025),** as a part of Statistics Graduate Student Association (SGSA), Texas A&M University.
- **Organizing Committee Member (2019—2020),** as a part of the annual fest *epsilon delta* organized by Department of Statistics, SXC Kolkata.

REFERENCES

- **Bani K. Mallick**
Department Head; Susan M. Arseven '75 Chair in Data Science and Computational Statistics; University Distinguished Professor; Regents Professor; Director, Center for Statistical Bioinformatics; Director, Texas A&M TRIPODS Data Science Institute (FIDS); Editor-in-Chief, SIAM/ASA Journal of Uncertainty Quantification Department of Statistics, Texas A&M University, College Station, TX 77843, USA
✉ bmallick@stat.tamu.edu
- **Debdeep Pati**
Professor, Department of Statistics, University of Wisconsin–Madison, Madison, WI 53706, USA
✉ dpati2@wisc.edu